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For some time, work has been underway aimed at significant simplification of the modelling
of hydraulic resistance occurring in the water hammer while maintaining an acceptable error.
This type of resistance is modelled using a convolution integral, among others, from local
acceleration of a liquid and a certain weighting function. The recently completed work shows
that during efficient calculations of the convolution integral, the effective weighting function
used does not have to be characterised by large convergence with a classical function (accor-
ding to Zielke during laminar flow and to Vardy-Brown during turbulent flow). However, it
must be a sum of at least two or three exponential expressions so that the final results of the
simulation could be considered as satisfactory. In this work, it has been decided to present
certain analytical formulas using which it will be possible to determine the coefficients of
simplified effective weighting functions in a simple direct way.
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1. Introduction

Unsteady flows occur in hydraulic systems, water supply systems, heating systems, thermal-
-hydraulic systems (cooling cores of nuclear power plants), etc., during start-up, braking or
failure. Proper modelling of flows of liquids under pressure in such systems remains a significant
challenge. Among the key issues widely discussed in new publications on the subject, special
emphasis is placed on the correct modelling: of the time-varying hydraulic resistance (Vardy and
Brown, 2003; Zarzycki et al., 2011; Reddy et al., 2012), cavitation (Zarzycki and Urbanowicz,
2006; Adamkowski and Lewandowski, 2009, 2012; Bergant et al., 2006; Karadžić et al., 2014;
Soares et al., 2015), the interaction between the liquid and walls of the conduit (Keramat et al.,
2012; Henclik, 2015; Zanganeh et al., 2015), the viscoelastic phenomenon that occurs during the
flow in a piping made of engineering polymers (Weinerowska-Bords, 2015; Soares et al., 2012;
Keramat et al., 2013; Pezzinga et al., 2014; Urbanowicz et al., 2016). Taking into account all
of the above phenomena while simulating unsteady flows has seemed impossible until recently.
But now, thanks to the work carried out by Keramat and Tijsseling (2012) presented at the
international conference on the analysis and damping of pressure surges associated with the
phenomenon of water hammer (BHR Pressure Surges, Lisbon), we know that it is possible. In
this general model, as well as in many others having a simplified design, the method of modelling
of the time-varying hydraulic resistance has a very large impact on pressure runs.

During acceleration, deceleration or as a result of rapid suppression of the fluid flow resulting
from quick valve closing (the so called water hammer effect occurs then), the friction of the fluid
against pipe walls, as well as the internal friction between its elements, has a significant impact
on transient flow parameters. It was already noted by Roiti, Helmholtz, Stearn and Gromeka in
the first studies concerning unsteady fluid flow in pipes about 150 years ago. A rapid development
of numerical methods in the 1950th and the 1960th, particularly development of the method
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of characteristics being commonly used to date, induced further studies, the main objective of
which was to properly describe the friction occurring during the flow in a mathematical manner.
At present, the models enabling the pipe wall shear stress to be simulated can be divided

into two groups. The first group is simple models in which the stress is directly proportional to
a momentary local and convective acceleration of the fluid. The model developed by a group of
researchers under the leadership of Daily (1956), in which the stress depended only on momentary
local acceleration of the fluid and a certain constant coefficient, is considered a prototype. The
above model was developed with time by other researchers as Carstens and Roller, Safwat and
Polder and Shuy and Apelt. A significant adjustment was introduced by Brunone et al. (1991),
additionally making the stress conditional on momentary convective acceleration. Vı́tkovský
et al. (2000) introduced a sign next to the convective derivative, while Laurerio and Ramos
(2003) made a final adjustment of that model consisting in the splitting of the single constant
coefficient k into two new coefficients kt and kx, which are to be found next to adequate velocity
derivatives
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where: λq is the quasi-steady friction coefficient, ρ – liquid density, kt and kx – empirical coef-
ficients, D – pipe inner diameter, v – velocity, t – time, c – pressure wave speed, x – distance
along the pipe.
Ramos then numerically proved the impact of particular expressions of this solution on the

phase shifts and the speed of pressure wave damping, whereas Reddy et al. (2012), based on
known experimental results, presented a method consisting in the empirical selection of constants
when calculating the coefficients kt and kx that are to be found in final solution (1.1). The models
of the above group are limited due to the need for empirical determination of the coefficients kt
and kx. There are no papers that would show details of their numerical implementation; besides,
they are characterized by a limited qualitative compatibility of pressure course being modelled
(Adamkowski and Lewandowski, 2006), which is their major disadvantage.
The second group of models consists of theoretical models being based on the so called

convolution integral. The author of their prototype was Zielke (1968) who postulated

τw(t) =
4µ
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v +
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R

t∫
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where: µ is the dynamic viscosity coefficient, R – pipe inner radius, w(t) – weighting function.
The convolutional integral, being a product of the weight function w(t) and the momentary

value of fluid acceleration, is the inverse Laplace transform from the expression describing the
impedance of a hydraulic line. In laminar flows, this impedance is being calculated from a simple
analytical formula introduced by Brown, whereas in the turbulent ones it has a very complex
analytical and empirical form (empirical because an empirical distribution of the coefficient of
turbulent viscosity in the pipe cross-section is needed to resolve it), the derivation of which was
reached at the same time by Zarzycki (1997, 2000) and Vardy and Brown (1996, 2003, 2004).
The first numerical resolution of this integral being suitable for implementation in the me-

thod of characteristics was already shown in the work by Zielke (1968). Unfortunately, it was not
suitable for effective calculations, therefore a few years later Trikha (1975) presented another
numerical procedure based on a three term weighting function being constructed from expo-
nential terms. Unfortunately, also Trikha made too many simplifications, thus – with time –
other authors presented their revised versions of that procedure (Kagawa et al., 1983; Schohl,
1993). Recently, Vardy and Brown (2010) noticed and corrected a significant error in the ori-
ginal procedure according to Zielke, consisting in approximation instead of integration of the
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weight function in the dimensionless time interval from 0 to ∆t̂, but they did not present a re-
vised effective calculation procedure. Such a procedure was, however, presented by Urbanowicz
(2015).

It is also worth emphasising that Zarzycki (1997, 2000) as well as Vardy and Brown (1996,
2003, 2004) proved that solution in form of equation (1.2) may be also used for the modelling
of turbulent unsteady flows, provided that an adequate weight function was going to be used.

Because all effective solutions are based on the weighting functions being a finite sum of
exponential terms, the authors of effective numerical solutions frequently showed new forms of
those functions in their papers referring to the modelling of laminar flow (Trikha 1975, Kagawa
et al., 1983; Schohl, 1993; Vı́tkovský et al., 2004) or the turbulent one (Vı́tkovský et al., 2004;
Zarzycki et al., 2011). Up to this day, the most accurate functions represented with an extended
range of use were presented by Urbanowicz and Zarzycki (2012). They are very useful in all
cases that require a complete weighting function, for example in the modeling of one-directional
accelerated or decelerated flows. The coefficients describing the effective weighting functions in
turbulent flow are closely dependent on the Reynolds number and the internal roughness of the
pipe walls. For correct determination, the classical scaling procedure developed by Vı́tkovský et
al. (2004) can be used, or the universal procedure (Urbanowicz et al., 2012). The advantage of
them is providing the shape of the effective weighting function compatible with the shape of the
classical laminar weighting function presented by Zielke (1968) for the critical Reynolds number.

In this paper, analytical formulas that enable coefficients describing simplified effective we-
ighting functions composed of two or three terms to be determined are presented. The method is
responsible for offloading computer memory and accelerating the iterative computational process
without losing accuracy. The examplary results of simulation tests presented confirm high com-
patibility of the simulated courses (with the use of the weighting function with limited ranges
and the same being characterized by a simple structure) with the experimental ones.

2. New idea

Recently completed studies have shown that unsteady flows can be modelled accurately using
simplified effective weighting functions consisting of only two k=2 or three k=3 exponential
expressions (Urbanowicz, 2015; Urbanowicz and Zarzycki, 2015)

w(t) =
k∑

i=1

mie
−nit̂ (2.1)

wheremi and ni are coefficients of effective weighting function, t̂ is the dimensionless time. These
expressions are combined with the new improved method for calculating shear stress. Functions
used in the studies are characterised by a limited yet essential range of application (Fig. 1).

The lower end of this range in the general case is set equal to the dimensionless time step ∆t̂,
and the upper end to the multiplicity there of 103∆t̂. The aforementioned time step in numerical
calculations is calculated individually for all pressure conduits that retain their shape stability
using the formula

∆t̂ =
L

f

ν

cR2
(2.2)

where: L is conduit length, ν – kinematic viscosity of liquid, f – number of analysed cross-sections.

Calculation of the coefficientsmi and ni describing the previously analysed simplified effective
weighting functions required the use of a numerical method developed in 2012 (Urbanowicz,
2012). Elimination in this work of the numerical procedure mentioned above at the stage of
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Fig. 1. Significant range of weighting functions

determining the weighting function coefficients reduces time needed for numerical computation,
facilitating the modelling of unsteady flows to perform a simple verification of the effectiveness
of the method presented in the work of Urbanowicz and Zarzycki (2015) and enabling simple
implementation of this method in the existing commercial software by introducing a variable
hydraulic resistance coefficient

λ(t+∆t) = λq,(t+∆t) (2.3)

+
16ν

R|v(t+∆t)|v(t+∆t)

j
∑

i=1

[yi(t)Ai + ηBi(v(t+∆t) − v(t)) + (1− η)Ci(v(t) − v(t−∆t))]
︸ ︷︷ ︸

yi(t+∆t)
︸ ︷︷ ︸

λu,(t+∆t)

In the equation above, constants Ai, Bi and Ci depend only on coefficients mi and ni describing
the effective weighting function and the dimensionless time step

Ai = e
−ni∆t̂ Bi =

mi

ni∆t̂
(1−Ai) Ci = AiBi (2.4)

3. Analytical approximate solution

Difficulties in widespread use of the simplified methodology presented in the work of Urbano-
wicz and Zarzycki (2015), arising from the need to use the numerical procedure (Urbanowicz,
2012), may discourage practical use of the solutions discussed. Therefore, to further simplify
the modelling of unsteady resistance, analytical solutions will be presented that can help one to
accurately calculate coefficients mi and ni of simplified effective weighting functions as a func-
tion of the dimensionless time step ∆t̂. The studies carried out previously (Urbanowicz, 2015;
Urbanowicz and Zarzycki, 2015) indicate that the relative percentage error of effective weighting
functions should not exceed 30% for the two-expression functions or 10% for three-expression
functions and that the optimal range of applicability of these functions should be from ∆t̂ to
103∆t̂. As can be seen in equation (2.2), the dimensionless time step ∆t̂ which is the starting
point for the applicability of effective weighting functions assumes different values depending on
the properties of flowing liquid, the conduit and the numerical method. Based on the analysis
of practical and theoretical examples, the possible range of its variability can be specified using
the domain of ∆t̂ ∈ [10−10; 10−1].

To determine the analytical function describing variation of the values of coefficients of
two-expression effective weighting functions, it is necessary to first identify the set of values of
these coefficients. For this purpose, the method discussed in 2012 was used (Urbanowicz, 2012).
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When searching for an analytical solution for the effective two-expression functions, 93 sets of
coefficients were determined (m1,m2, n1, n2) for the range from 10

−10 every 100.1 to 10−0.8. It
is worth noting that for ∆t̂ = 10−0.8, the values of these coefficients coincided with the values
known from the classical weighting function for laminar flow (i.e. weighting according to Zielke
(1968)), i.e.m1 = 1,m2 = 1, n1 = 26.3744, n2 = 70.8493. In the case of effective three-expression
functions, 89 sets of coefficients were determined (m1,m2,m3, n1, n2, n3) for the range from 10

−10

every 100.1 to 10−1.2. The difference in the number of these sets resulted from the fact that in
this case, already for ∆t̂ = 10−1.2, the values of these coefficients coincided with the values
known from the classical weighting function for laminar flow, i.e. m1 = 1, m2 = 1, m3 = 1,
n1 = 26.3744, n2 = 70.8493, n3 = 135.0198. Knowing all the above values, the next step was
to adopt appropriate forms of analytic functions, which would accurately describe variability
of these coefficients as a function of the dimensionless time step. Analysis of the variability of
individual coefficients and the tests performed with other forms revealed that in the case of
two-expression functions, their coefficients can be described using the formula

mi, ni =
3∑

i=1

Ai∆t̂
Bi + C (3.1)

in the range of their linearity on a log-log graph (Fig. 2a) (interval for ∆t̂ from 10−10 to 10−4,
exceptionally for n1 to 10

−5).

And the formula

mi, ni =
4∑

i=1

Die
−Ei∆t̂ + F (3.2)

for the range of their non-linearity on a log-log graph (Fig. 2b) (interval for ∆t̂ from 10−4

to ∞, exceptionally for n1 from 10
−5 to ∞). On the graphs presented below (Figs. 2 and 3), the

abbreviation “sol.” means that these are the coefficients calculated using the presented analytical
formulas.

Fig. 2. Compatibility of the analytical solution – two-expression functions

To find definitive values of the coefficient of the functions adopted above, i.e. A1, . . . , A3,
B1, . . . , B3 and C, and D1, . . . ,D4, E1, . . . , E4 and F , the Curve Fitting Toolbox module imple-
mented in MATLAB was used. The values of the estimated final coefficients are summarised in
Table 1 and 2.

Analysis of the variability of individual coefficients m1, . . . ,m3 and n1, . . . , n3 representing
three-expression functions showed that the forms of analytical functions, which were assumed
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Fig. 3. Compatibility of the analytical solution – three-expression functions

Table 1. Coefficients of the analytical solution of effective two-expression functions for the range
of small dimensionless time steps (Eq. (3.1))

m1 m2 n1 n2
Coeff. Interval Interval Interval Interval

[10−10; 10−4] [10−10; 10−4] [10−10; 10−5] [10−10; 10−4]

A1 0.03234 0.1963 0.001476 0.09021

A2 48.35 2.88 0.1203 0.382

A3 9.717 −0.2661 526.7 223.1

B1 −0.5 −0.5 −1 −1

B2 0.5437 3.575 −0.5 −0.4592

B3 3.85 5.276 0.5567 0.2615

C −1.318 −0.2351 6.091 0

Table 2. Coefficients of the analytical solution of effective two-expression functions for the range
of large dimensionless time steps (Eq. (3.2))

m1 m2 n1 n2
Coeff. Interval Interval Interval Interval

(10−4;∞) (10−4;∞) (10−5;∞) (10−4;∞)

D1 0.1480 2.214 9.317 56.56

D2 0.3227 4.155 87 136.5

D3 0.8039 7.929 188.1 396.7

D4 2.458 20.485 477.43 1903.3

E1 188.8 62.02 4459 79.71

E2 1316 386.6 29320 489.6

E3 5728 2191 104300 2880

E4 19270 12570 290500 15760

F 1 1 26.3744 70.8493

in the case discussed above, would also work. Thus, in range of its linearity on a log-log graph
(Fig. 3a), the function sought has the form

mi, ni =
4∑

i=1

Ai∆t̂
Bi (3.3)

whereas for the range of non-linearity (Fig. 3b), we can describe it using the form exactly
the same as in equation (3.2). In the case of the aforementioned analytical solution describing
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coefficients of the effective three-expression weighting functions, much greater volatility of the
dimensionless time was noted at which the functions describing individual coefficients correctly
passed from the linear form (in log-log scale) to the non-linear form. Specific times of transition
from one form to another are shown in Tables 3 and 4.

Table 3. Coefficients of the analytical solution of effective three-expression functions for the
range of small dimensionless time steps (Eq. (3.3))

m1 m2 m3 n1 n2 n3
Coeff. Interval Interval Interval Interval Interval Interval

[10−10; 10−4] [10−10; 10−4] [10−10; 10−4] [10−10; 10−5] [10−10; 10−4.4] [10−10; 10−4.2]

A1 0.02239 0.06549 0.2336 0.0009749 0.02208 0.3037

A2 −1.123 −0.1334 11.52 0.09783 0.1233 0.1641

A3 34.85 −2.54 −11.62 6.215 11.55 5.039

A4 2.114e+06 2559 7.868 887.8 2025 1.011e+04

B1 −0.5 −0.5 −0.5 −1 −1 −1

B2 0 0 0 −0.5 −0.5 −0.5

B3 0.5138 0.2948 0.0002657 0.001247 0.001441 −0.07303

B4 1.789 2.894 3.297 0.5838 0.6193 0.6172

Table 4. Coefficients of the analytical solution of effective three-expression functions for the
range of large dimensionless time steps (Eq. (3.2))

m1 m2 m3 n1 n2 n3
Coeff. Interval Interval Interval Interval Interval Interval

(10−4;∞) (10−4;∞) (10−4;∞) (10−5;∞) (10−4.4;∞) (10−4.2;∞)

D1 0.02449 0.8285 3.272 1.16 26.05 216

D2 0.06897 1.547 6.819 25.91 71.93 729.2

D3 0.2359 2.776 13.42 96.44 263.8 2522

D4 1.8429 5.9004 22.9793 251.6091 1427 12006.2

E1 246 190.8 83.86 2939 314.5 140.2

E2 995.2 907.7 645.4 1.792e+04 2054 969.4

E3 4787 4112 3779 6.098e+04 1.09e+04 5460

E4 1.696e+04 1.608e+04 1.895e+04 2e+05 4.32e+04 2.803e+04

F 1 1 1 26.3744 70.8493 135.0198

The maximum values of relative percentage errors, which are represented by the effective
weighting functions determined using the above analytical formulas, calculated with reference
to the classical function according to Zielke (1968) are illustrated in the chart below (Fig. 4). The
graph shows that the maximum error for the dimensionless time step of∆t̂ ≈ 10−4 systematically
decreases until reaching zero. Achieving the zero value is equivalent to overlaping of coefficients
calculated using the analytical method with coefficients from the classical laminar weighting
function according to Zielke.

With the use of the analytical formulas presented in this Section, it is possible only to
determine coefficients that describe effective laminar functions. In a situation where there is
turbulent flow, these coefficients have to be rescaled in accordance with the procedure described
in (Vı́tkovský et al., 2004; Urbanowicz et al., 2012) for, as we know, the form of a classical
turbulent weighting function according to Vardy and Brown (2007) is highly dependent on the
Reynolds number.
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Fig. 4. Maximum relative percentage errors of weighting functions designated analytically

4. Example calculation results

To examine the impact of this new effective weighting function procedure presented in the
previous Section, comparative studies for pure water hammer have been made. Basic continuity
(4.1)1 and momentum (4.1)2 equations describing unsteady flow in a horizontal pipe are

∂p

∂t
+ ρc2

∂v

∂x
= 0

∂p

∂x
+ ρ
∂v

∂t
+
2

R
τw = 0 (4.1)

where: p is pressure, v – mean velocity in pipe cross-section.
To derive the above equations, the following assumptions are made: flow in the pipe is

assumed as one-dimensional and the velocity distribution uniform over the pipe cross-section; the
pipe walls and the fluid are assumed as linearly elastic (stress proportional to strain). Equations
(4.1) have been solved using the well-known method of characteristics.
In this paper, the results of comparisons for two significant simulated and experimentally

obtained pressure runs are presented. The experimental data have been obtained in a copper
pipeline at the IMP in Gdańsk by Adamkowski and Lewandowski (2006) and previously publi-
shed. All the details of the experimental test rig and the numerical procedures input data are
presented in Table 5.

Table 5. Test rig details and input data for simulations

L = 98.11m, ρ = 997.65 kg/m3, D = 0.016m,
ν = 9.493 · 10−7m2/s, f = 32, e = 0.001m, c = 1300m/s

v0 [m/s] Re0 [–] pr [Pa] Type of flow

0.066 1112 1.265 · 106 laminar

0.94 15843 1.264 · 106 turbulent

In the numerical analyses being made, the dimensionless time step amounted to

∆t̂ = ∆t
ν

R2
= 3.5 · 10−5

where: ∆t = ∆x/c = 0.0024 s and ∆x = L/f = 3.066m.
For the above dimensionless step, coefficients of optimum simplified effective weighting func-

tions have been determined with the use of the procedure presented in this paper, see Table 6.
The coefficients for turbulent tests required the re-scaling. The details referring to the scaling

procedure were discussed in the papers by Vı́tkovský et al. (2004) and Urbanowicz et al. (2012).
Owing to the fact that the pipe walls are assumed to be rough (k = 0.0000015 [m]), the coefficients
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Table 6. Calculated weighting function coefficients

L = 98.11m, ρ = 997.65 kg/m3, D = 0.016m, ν = 9.493 · 10−7m2/s,
f = 32, e = 0.001m, c = 1300m/s

m1 m2 m3 n1 n2 n3 type of flow – no terms

4.333 32.954 – 70.45 2636 – laminar – 2 terms

2.864 10.816 39.43 52.92 666.9 8738 laminar – 3 terms

4.364 33.195 – 503.59 3069 – turbulent – 2 terms

2.885 10.895 39.72 486.05 1100 9171 turbulent – 3 terms

mi and ni are scaled; the coefficients of exact weighting function according to Vardy and Brown
(2007) are used for scaling. The coefficients of effective weighting function with extended range
of applicability (26 terms), which with high accuracy corresponds to the classical weighting
function according to Zielke (numerical calculations in this paper were also made using this
function), were previously discussed in the paper by Urbanowicz and Zarzycki (2012). The
results of numerical tests obtained are illustrated in Figs. 5 and 6.

Fig. 5. Results for laminar pipe flow (Re = 1112)

The main conclusions from the comparisons presented above are as follows:

a) Simplified modelling with a new weighting function constructed with only two exponen-
tial terms is responsible for a gentle phase shift in the course being modelled. They are
particularly visible in the final phase of flow deceleration (Figs. 5b and 6b). However, for
the needs of engineering practice, the obtained results can be considered sufficient.

b) Application of a new three term weighting function, the applicability range of which strictly
depends on the hydraulic system analysed as well as on the numerical density of grid on the
pipe length, allowed obtaining numerical results qualitatively compatible with the exact
results of numerical tests (obtained using the exact extended 26 term weighting function
and the full convolution based on the classical weighting function).
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Fig. 6. Results for turbulent pipe flow (Re = 15843)

c) Phase shifts between the experimental results and the numerical ones shown in Figs. 5b, 5d
and 6b, 6d can be explained by a gentle variation in the speed of pressure wave propagation
during recording of experimental courses. This variation of results may result from the
impact of non-dissolved gases (air) found in the experimental system.

The simulation tests performed clearly show the impact of unsteady friction on the courses
obtained as a result of examining the water hammer effect. The applied and very simplified
weighting functions present themselves perfectly against the results obtained using only the
quasi-steady model of friction. Thus, it is possible to safely recommend the presented procedure
for engineers who are involved in protection of hydraulic systems against negative effects of the
water hammer.

5. Summary

The analytical solutions presented in the paper allow one to quickly determine simplified forms
of effective weighting functions composed of two or three exponential expressions. These corre-
lations could be used in a simple manner by applying the instantaneous resistance coefficient
(Eq. (2.3)) in commercial and custom computer programs used for the modelling of unsteady
flows of liquids in conduits under pressure. The biggest problem associated with implementing
the presented solution is the need to introduce into the program many constants estimated in
this paper, which describe individual solutions. Another issue which the future user of the pre-
sented formulas should pay attention to, is the right choice of the method of the characteristics
grid. With the range of application of effective weighting functions simplified in this manner,
the number of computing sections should not be higher than f=50, because for this value, the
instantaneous hydraulic resistance calculated is a function of velocity changes occurring in the
last five periods of the water hammer.
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